Computational analysis of 3'-ends of ESTs shows four classes of alternative polyadenylation in human, mouse, and rat.

نویسندگان

  • Jun Yan
  • Thomas G Marr
چکیده

Alternative initiation, splicing, and polyadenylation are key mechanisms used by many organisms to generate diversity among mature mRNA transcripts originating from the same transcription unit. While previous computational analyses of alternative polyadenylation have focused on polyadenylation activities within or downstream of the normal 3'-terminal exons, we present the results of the first genome-wide analysis of patterns of alternative polyadenylation in the human, mouse, and rat genomes occurring over the entire transcribed regions of mRNAs using 3'-ESTs with poly(A) tails aligned to genomic sequences. Four distinct classes of patterns of alternative polyadenylation result from this analysis: tandem poly(A) sites, composite exons, hidden exons, and truncated exons. We estimate that at least 49% (human), 31% (mouse), and 28% (rat) of polyadenylated transcription units have alternative polyadenylation. A portion of these alternative polyadenylation events result in new protein isoforms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P-215: Discovery of A Novel APA Variant of A Human Potential Gene Based on Expressed Sequenced Tags Analysis

Background: Expressed sequence tags (ESTs) are sequences of cDNA fragments prepared from different tissue sources. There are over one million of these sequences in the publicly available database, and these sequences are believed to represent more than half of all human genes. The ESTs belong to different cDNA libraries, was prepared from one particular cell type, organ, or tumor. Therefore, th...

متن کامل

Under-representation of PolyA/PolyT tailed ESTs in Human ESTdb: an obstacle to alternative polyadenylation inference

Alternative polyadenylation is a key regulatory process which affects the 3' end formation of variants of the same transcription unit, thus altering gene expression pattern, and transcripts' cellular behaviour and characteristics. The common methodology for computational analysis of alternative polyadenylation signal utilization is based on EST data, specifically on PolyA/PolyT tailed ESTs. Stu...

متن کامل

PolyA_DB 3 catalogs cleavage and polyadenylation sites identified by deep sequencing in multiple genomes

PolyA_DB is a database cataloging cleavage and polyadenylation sites (PASs) in several genomes. Previous versions were based mainly on expressed sequence tags (ESTs), which had a limited amount and could lead to inaccurate PAS identification due to the presence of internal A-rich sequences in transcripts. Here, we present an updated version of the database based solely on deep sequencing data. ...

متن کامل

PolyA_DB 2: mRNA polyadenylation sites in vertebrate genes

Polyadenylation of nascent transcripts is one of the key mRNA processing events in eukaryotic cells. A large number of human and mouse genes have alternative polyadenylation sites, or poly(A) sites, leading to mRNA variants with different protein products and/or 3'-untranslated regions (3'-UTRs). PolyA_DB 2 contains poly(A) sites identified for genes in several vertebrate species, including hum...

متن کامل

Patterns of variant polyadenylation signal usage in human genes.

The formation of mature mRNAs in vertebrates involves the cleavage and polyadenylation of the pre-mRNA, 10-30 nt downstream of an AAUAAA or AUUAAA signal sequence. The extensive cDNA data now available shows that these hexamers are not strictly conserved. In order to identify variant polyadenylation signals on a large scale, we compared over 8700 human 3' untranslated sequences to 157,775 polya...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genome research

دوره 15 3  شماره 

صفحات  -

تاریخ انتشار 2005